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Deterministic 3D-Perturbations of Planar
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We show that the long-time behavior of the stationary incompressible flow in
R3, which is close to a planar one, under broad generic assumptions, is, in a
sense, stochastic. This stochasticity is a result of instability of the corresponding
planar flow near the saddle points of the stream function. The stochastic process
which describes long-time evolution of the slow component of the motion is
calculated.
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turbulence.

Consider a stationary 3D-motion of an incompressible fluid invariant with
respect to shifts along axis x3. Let the x3-component of the velocity field
V(x), x ¥ R3, be zero, so that V(x1, x2, x3)=(v1(x1, x2), v2(x1, x2), 0). Since
the field V(x) is divergence free, one can introduce the stream function
k(x1, x2) such that

(v1(x1, x2), v2(x1, x2))=Nbk(x1, x2)=1“k(x1, x2)
“x2

,
“k(x1, x2)

“x1

2

The flow corresponding to this velocity field is planar and is the same
in each plane x3=const. Its trajectories are defined by the equations

Ẋ1(t)=
“k

“x2
(X(t)), Ẋ2(t)=

“k

“x1
(X(t)), Ẋ3(t)=0. (1)



The trajectories are connected components of the level sets of k(x1, x2)
in the planes x3=const. Assume for simplicity that k(x1, x2) is generic (has
a finite number of critical points and they are non-degenerate), and
lim k(x1, x2)=., as |x1 |+|x2 | Q ., so that all level sets are bounded. We
will write equations (1) in the form Ẋt=Nbk(Ẋt) putting the x3-component
of Nbk equal to zero.

Consider now a 3D-perturbation of this planar motion preserving the
incompressibility:

V e(x)=V(x)+eb(x), x ¥ R 3,

where b(x) is a smooth vector field, div b(x)=0, 0 < e ° 1.
Then the trajectories of the perturbed flow are governed by the equa-

tions

Ẋ̃ e(t)=Nbk(X̃ e(t))+eb(X̃ e(t))

If x3-component of b(x) is again equal to zero, the new motion is also
planar, and for, 0 < e ° 1, is close to the original motion on any time
interval. But if b3(x) ] 0, the behavior of the perturbed flow can be essen-
tially different from the non-perturbed flow. Moreover, long time behavior
of X̃ e(t) can be, in a sense, stochastic in spite of the deterministic character
of the original flow and perturbations.

Assume, first, that the stream function k(x1, x2) has just one critical
point, a minimum at a point O ¥ R2, k(O)=0. Then, since we assume that
k(x1, x2) Q . as |x1 |+|x2 | Q ., each non-perturbed trajectory is periodic
with a period

T(z)=G
C(z)

dl
|Nk(x)|

,

where C(z)={(x1, x2) ¥ R2 : k(x1, x2)=z}, dl is the length element on
C(z), and z=k(x1, x2) if the trajectory starts at (x1, x2, x3) ¥ R3. On any
finite (independent of e) time interval [0, T], X̃ e

t converges uniformly to the
non-perturbed motion. But on intervals of order e−1, e a 0, the perturbed
motion essentially deviates from the non-perturbed one.

To describe the motion on large time intervals, it is convenient to
rescale the time: Put X e

t =X̃ e(t/e). Then X e(t) satisfies the equation

Ẋ e(t)=
1
e

Nbk(Xe(t))+b(Xe(t)),

X e(0)=x ¥ R3.

(2)
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The perturbed motion has two components, the fast one, which is,
roughly speaking, the motion along the non-perturbed trajectories, and the
slow component which describes displacements in the directions transversal
to the non-perturbed trajectories.

The fast motion can be characterized by the invariant density Mz(x)
on each periodic trajectory C(z):

Mz(x)=1 |Nk(x)| G
C(z)

dl
|Nk(x)|

2−1

=
1

T(z) |Nk(x)|
, x ¥ C(z).

The slow component can be described by the evolution of Y e
t =

(k(Xe
1(t), X e

2(t)), X e
3(t)) ¥ [0, .) × R1, if k(x1, x2) has just one minimum

at O ¥ R2, lim|x1|+|x2| Q . k(x1, x2)=. and k(O)=0.
The standard averaging principle implies that the slow component Y e

t

converges uniformly on any time interval [0, T] to the solution of equa-
tions

k̇(t)=
1

T(k(t))
B(k(t), X3(t)),

Ẋ3(t)=
1

T(k(t))
D(k(t), X3(t)), (3)

k(0)=k(x1, x2), x3(0)=x3.

The coefficients B(z, x3) and D(z, x3) are defined as follows:

B(z, x3)=G
C(z)

b(x) · Nk(x)
|Nk(x)|

dl=−F
G(z)

“b3(x1, x2, x3)
“x3

dx1 dx2,

D(z, x3)=G
C(z)

b3(x1, x2, x3)
|Nk(x1, x2)|

dl, (4)

where G(z) … R2 is the domain bounded by C(z). We used here that
div b(x)=0, so that “b1

“x1
+“b2

“x2
=−“b3

“x3
. The limiting slow motion takes place in

[0, .) × R1. It is easy to check that the boundary {O} × R1 of this half-
plane is inaccessible in finite time for the limiting slow motion.

Let us now consider the case when the stream function k(x1, x2) has
more than one critical point (see Fig. 1), min k(x1, x2)=0. Denote by C

the graph homeomorphic to the set of connected components Ci(z) of the
level sets C(z)={x ¥ R2 : k(x)=z}=1n(z)

i Ci(z), z ¥ [0, .), provided with
the natural topology (compare with refs. 3 and 4).
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Figure 1.

Let Y: R3
Q C × R1=P be the projection of R3 on P=C × R1:

Y(x1, x2, x3) is the point of P such that the second component equal to x3

and the first component is the point of C corresponding to the level set
component of k(x1, x2) containing the point (x1, x2). Let us number the
edges of C. Let the triple (k(x), k(x), x3) is the point of P corresponding
to x=(x1, x2, x3) in such a mapping; k(x) is the number of the edge of C

containing Y(x). The slow component of the motion is now Yt=Y(Xe
t ). It

changes in the set P=C × R1 which is called open book. In the case of
k(x) with one saddle point like in Fig. 1, the set P is shown on Fig. 2.

Until Yt belongs to the same page of the open book P, it can be
described by standard averaging principle as above. The only difference is
that, on each page, the averaging should be performed over the corre-
sponding Ci(z) or Gi(z) so that the functions B and D in system (3) now
depend on the number of the page (on the number of the edge of C);
B=Bi(z, x3), D=Di(z, x3), Ti(z) are, in general different for different
i ¥ {1, 2, 3}.

When a trajectory of the limiting slow motion approaches the set
Qk={Ok} × R1, where Ok is a vertex of C, Bi(z, x3) tends to zero. If
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k(x1, x2) has at Ok an extremum (such vertices of C are called exterior),
then the set Ok × R1 is inaccessible (see refs. 3 and 4). But it is easy to check
that if Ok corresponds to a saddle point of k(x1, x2), the set {Ok} × R1 (the
binding of the open book) can be accessible in a finite time due to the log-
arithmic grows of Ti(z) as z Q k(Ok).

As a result of the accessibility of the binding, the limit of the slow
component Y e

t as e a 0 may not exist for large enough t. One can see this
from Fig. 3, where the phase picture of the projection of the trajectories of
the perturbed flow on the plane (x1, x2) is shown for k(x1, x2) as in Fig. 1
and perturbations b(x)=(b1(x1, x2), b2(x1, x2), b3(x1, x2, x3), “b3

“x3
(x) > 0.

The separatrices of the saddle point O · Œ
2 are shown in the picture. The

width of the ribbons is of the order e as e a 0. The shadowed ribbon enters
the left domain G− (see Fig. 1). The white ribbon enters G+. If x is situated
outside of the curve c, it will alternatively belong to shadowed or to white
ribbon as e a 0. Since the slow component enters G− 2 G+ in a finite time,
the limit of (k(Xe

1(t), X e
2(t)), k(Xe

1(t), X e
2(t))) as e a 0 does not exist for t

greater than the entrance time.
To regularize the problem and to establish the averaging principle in

more or less general situation, one can introduce additional small stochas-
tic perturbations of system (2). This can be done in various ways. The first
way, and this, roughly speaking, is the traditional approach in the theory
of dynamical systems, is to consider random perturbations of the initial
conditions.

Let td be the random variable distributed uniformly in the ball
Ed={x ¥ R3, |x| [ d}. Let X e, d

t be the solution of (2), with the initial con-
dition X e, d

0 =x+td. Then X e, d
t and its projection Y e, d

t =Y(Xe, d
t ) on P are

stochastic processes.
Consider a stochastic process Yt, 0 [ t [ T, on the open book P which

is defined as follows:
Inside each page pi=Ii × R1, Ii … C, the evolution of Yt is determinis-

tic and is governed by the equations ((k, x3) are the coordinates in pi)
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dk(t)
dt

=
1

Ti(k(t))
Bi(k(t), X3(t)), k(0)=k(x2, x2),

dX3(t)
dt

=
1

Ti(k(t))
Di(k(t), X3(t)), X3(0)=x3.

(5)

The coefficients Bi(z, x3), Di(z, x3), Ti(z) are defined by formulas (4)
with C(z) and G(z) replaced by Ci(z) and Gi(z) where Ci(z) are the com-
ponents of z-level set of k(x1, x2) corresponding to Ii … C and Gi(z) are
domains bounded by Ci(z). Trajectory Yt=(k(t), x3(t)) can reach the
binding (axis x3 in Fig. 2.) of the book in a finite time. Let it be the line
Qk=Ok × R1, where Ok is the vertex of C corresponding to a saddle point
of k(x1, x2). Three pages are glued together at Qk: pi1

, pi2
, pi3

… P. Let Yt

come to a point M ı Qk from the plane pi1
. It follows from the definition

of functions Bi(z, x3), that at least one of the fields Bi2
(z, x3) in pi2

, or
Bi3

(z, x3) in pi3
is directed from Qk in a vicinity of point M. If there is just

one such field, say Bi2
(z, x3), the trajectory of Yt leaves M immediately to

the plane pi2
and moves along the field (Bi2

(z, x3), Di2
(z, x3)) in pi2

. If both
fields Bi2

(z, x3) and Bi3
(z, x3) are directed from Qk, the process Yt also

leaves Qk immediately and goes to pi2
or to pi3

with probabilities P2(M)
and P3(M) independently of its behavior before it comes to the point
M ¥ Qk. To define the probabilities P2(M) and P3(M), consider the c-curve
(see Fig. 1), corresponding to the vertex Ok. Let the non-perturbed trajec-
tories situated inside G− near c correspond to Ii2

, trajectories inside G+

correspond to Ii3
(and trajectories outside G− 2 G+ corresponds to Ii1

).
Note, that, in general, the non-perturbed system may have inside G− or G+

other saddle points. Let the point M ¥ P has coordinates (z, i, x3). Then

P2(M)+P3(M)=1,
P2(M)
P3(M)

=

:F
G−

“b3(x1, x2, x3)
“x3

dx1 dx2
:

:F
G+

“b3(x1, x2, x3)
“x3

dx1 dx2
:
. (6)

These conditions define P2(M) and P3(M).
The process Yt on P defined above is unique. The stochasticity of Yt is

concentrated just on the binding of the open book, more precisely, at
points of the binding such that there are two exits from them.

One can prove (compare with ref. 1), that if k(x1, x2) has just one
saddle point like in Fig. 1, the process Y e, d(t) converge weakly in the space
C0T(P) of continuous on [0, T] functions with values in P to the process
Yt, if, first, e a 0 and then d a 0.
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But it turns out, that if the stream function has more than one saddle
point, the regularization by random perturbation of the initial point does
not exist, at least, for some perturbations.

Therefore we will not go into details to prove the convergence of Y e, d
t

to Yt in the case of one saddle point.
One can use another way for the regularization of the problem: to

perturb stochastically not the initial conditions but the equations them-
selves:

Ẋ e, o(t)=
1
e

Nbk(Xe, o
1 (t), X e, o

2 (t))+b(X e, o(t))+`o sẆt (7)

Here Wt=(W1
t , W2

t , W3
t ) is the Wiener process in R3, s=(sij) is a

non-degenerate 3 × 3-matrix with constant coefficients, 0 < o ° 1. As
above, we consider Nbk as 3-vector with x3-component equal to zero. Define
a=(aij)=ssg. The generator of the diffusion process X e, o

t in R3 has the
form:

L e, ou(x)=
o

2
div(aNu(x))+b(x) · Nu(x)+

1
e

Nbk(x) · Nu(x).

The process X e, o(t) in R3 has a fast and a slow components as e a 0.
The slow component is the projection of X e, o(t) on the open book P:
Y e, o

t =Y(Xe, o
t ).

It follows from ref. 5 that the family Y e, o
t , 0 [ t [ T, converges weakly

as e a 0 in the space C0T(P) to a diffusion process Yo
t on P.

Inside a page pi … P, the process Yo
t is governed by the operator

L̄o
i u(z, x3)=

o

2Ti(z)
5 “

“z
1A11

i (z)
“u
“z
2+A33

i (z)
“

2u
“x2

3

6

+
1

Ti(z)
5Bi(z, x3)

“U
“z

+Di(z, x3)
“u
“x3

6 .

The coefficients Bi(z, x3), Di(z, x3), Ti(z) were defined above; A11
i (z),

A33
i are defined as follows:

A11
i (z)=F

Gi(Z)
div(aNk(x1, x2)) dx1 dx2, A33

i =a33Ti(z).

Where Gi(z) is the domain in the (x1, x2)-plane bounded by Ci(z) such
that Y(Gi(z) × R1) … pi.
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The operators L̄o
i define the process Yo

t not in a unique way: one
should add the gluing conditions at the binding of the open book P. The
gluing conditions define behavior Yo

t after hitting the binding.
The gluing conditions can be described by the domain DA of the

generator A of Yo
t : a bounded continuous function u(z, i, x3) on P belongs

to DA if

(1) inside each page pi … P, the function u(z, i, x3) has two continu-
ous bounded derivatives;

(2) the function Au (which is equal to L̄o
i u on pi) is continuous on P;

(3) at any line Qk={0k} × R1 … P which binds pages pi1
, pi2

, pi3
,

u(z, i, x3) satisfies the condition

C
3

l=1
ail

Dlu(0k, x3)=0 for any x3 ¥ R1 (8)

Here Dl means differentiation in z in the plane pil
, l ¥ {1, 2, 3}. To

calculate the coefficients ail
=ail

(0k), consider the .-shaped curve c corre-
sponding to the saddle point Ok (see Fig. 1 and notations introduced there).
Two bounded domains G− and G+ are defined by c. Let Ii1

be the edge of C

corresponding to the periodic trajectories situated inside G− in a neigh-
borhood of c, Ii2

corresponds to the trajectories inside G+ which are close
to c, and Ii3

corresponds to the exterior of G− 2 G+ near c. Then

ai1
=F

G−

div(aNk(x)) dx1 dx2, ai2
=F

G+

div(aNk(x1, x2)) dx1 dx2,

ai3
=−(ai1

+ai2
)

(9)

Remark. Note that the gluing conditions (8), (9) for the process Yo
t

on P are the same for all x3 and for all o, and they are independent of the
deterministic perturbation b(x1, x2, x3). If the diffusion matrix a=ssg is
unit, then the coefficients ai are equal to vorticity in corresponding
domains: vorticity of the non-perturbed flow w(x1, x2)=−Dk(x1, x2), and

ai1/i2
=:F

G− /+
w(x) dx : , ai3

=−:F
G− 2 G+

w(x) dx : .

Let us consider now the limiting behavior of Yo
t , 0 [ t [ T, as o a 0.

By standard arguments one can check that the family Yo
t , 0 < o [ 1, is tight

in the weak topology in the space C0, T(P) (compare with refs. 1 and 3.)
Thus, to prove the convergence we should establish uniqueness of the
limiting point.
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It is easy to see that inside each page p ¥ P the limiting process Yt,
0 [ t [ T, is the deterministic motion governed by the Eqs. (5). For
example, this can be proved using stochastic differential equations for
process Yo

t inside each page (see ref. 2, Chap. 4). Therefore, to prove the
uniqueness, it is sufficient to check that the limiting process spends time
zero at the binding and that the exit probabilities from any point of the
binding are defined in a unique way.

In the case b1(x1, x2), b2(x1, x2) independent of x3, both these state-
ments follow from Lemmas 2.3 and 2.2 of ref. 1 respectively. Moreover, the
exit probabilities from a point of the binding, in this case, according to
ref. 1, are the same for all x3, and they are defined by equalities (6). The
case of perturbations depending on all variables x1, x2, x3 can be reduced
to the x3-independent case by using comparison arguments.

Note, that in spite of the fact that the gluing conditions for yo
t , o > 0,

are independent of the perturbations b(x) and defined just by the diffusion
matrix (aij) (and, of course, the stream function), the exit probabilities for
Yt are independent of (aij) and are defined by the deterministic perturba-
tions b(x). This means that stochasticity of the limiting slow motion of the
flow is an intrinsic property of the non-perturbed system and its determi-
nistic perturbations. The stochastic term serves just for regularization of
the problem.

Combining these arguments, we have the following result:

Theorem. The slow component Y e
t =Y(Xe

t ) of perturbed flow (2)
converges as e a 0 to the stochastic process Yt on the open book P, which is
defined by Eqs. (5) inside the pages and by conditions (8) at the binding.
This means that the double limit of Y(Xe, o

t ), where X e, o
t is defined by (7),

as, first, e a 0, and then o a 0, in the weak topology in C0T(P) is equal to Yt.
The limiting process is independent of stochastic perturbations, which were
introduced for regularization of the problem: The double limit of Y e, o

t is
the same for any matrix s, det s ] 0.

Finally, I will mention one more way of regularization of problem (2):
Replace b(x) in this equation by bm(x)=b(x)+mb̃(x), where b̃(x) is a
random field in R3 and m ¥ R1. Let X e, m

t be the solution of Eq. (2) with
such replacement. Under some assumptions concerning the random field
b̃(x) (compare with ref. 6), one can prove that the double limit
limm a 0 lime a 0 Y(X e, m

t ) in the weak topology of C0T(P) exits and equal to
Yt . So that this regularization again leads to the same process Yt .

The intrinsic Stochasticity of incompressible and compressible flows
were studied in a number of recent papers (see, for example, refs. 7 and 9,
and a review paper 8). Stochasticity in those papers, as a rule, is the result
of non-smoothness of the velocity field. If the velocity field is not Lipschitz,
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the differential equations for the trajectories may have non-unique solu-
tion. If we regularize the problem by addition of a small white noise
`o Ẇt, 0 < o ° 1, corresponding stochastic equation has a unique solu-
tion. If now o Q 0, we can have a stochastic process in the limit. One can
consider other types of regularization as well. In our case, the intrinsic
stochasticity on long time intervals is caused by the instabilities of the
original non-perturbed flow. The distribution of the limiting slow motion
will be the same for various types of the regularization, so that the
stochasticity is intrinsic in a strong sense.

Finally, I will mention, that the weak compressibility of the fluid can
lead to stochasticity of the stationary 2D-flow: weak compressibility means
that div b(x)=ob(x)=0, 0 < o ° 1. Since b(x) – 0, the slow component
of the 2D-flow can reach the c-curve of a saddle point of the stream func-
tion k(x), x ¥ R2, and then it may go with positive probabilities to one of
the wells related to this saddle point. (1) Stochasticity related to week
compressibility is studied also in ref. 7.
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