Deterministic 3D-Perturbations of Planar Incompressible Flow Lead to Stochasticity

Mark Freidlin¹

Received June 4, 2002; accepted November 4, 2002

We show that the long-time behavior of the stationary incompressible flow in R^3 , which is close to a planar one, under broad generic assumptions, is, in a sense, stochastic. This stochasticity is a result of instability of the corresponding planar flow near the saddle points of the stream function. The stochastic process which describes long-time evolution of the slow component of the motion is calculated.

KEY WORDS: Averaging principle; random perturbation; incompressible fluid; turbulence.

Consider a stationary 3D-motion of an incompressible fluid invariant with respect to shifts along axis x_3 . Let the x_3 -component of the velocity field $V(x), x \in \mathbb{R}^3$, be zero, so that $V(x_1, x_2, x_3) = (v_1(x_1, x_2), v_2(x_1, x_2), 0)$. Since the field V(x) is divergence free, one can introduce the stream function $\psi(x_1, x_2)$ such that

$$(v_1(x_1, x_2), v_2(x_1, x_2)) = \overline{\nabla}\psi(x_1, x_2) = \left(\frac{\partial\psi(x_1, x_2)}{\partial x_2}, \frac{\partial\psi(x_1, x_2)}{\partial x_1}\right)$$

The flow corresponding to this velocity field is planar and is the same in each plane $x_3 = \text{const.}$ Its trajectories are defined by the equations

$$\dot{X}_1(t) = \frac{\partial \psi}{\partial x_2}(X(t)), \qquad \dot{X}_2(t) = \frac{\partial \psi}{\partial x_1}(X(t)), \qquad \dot{X}_3(t) = 0.$$
(1)

1209

¹ University of Maryland, College Park; e-mail: mif@math.umd.edu

The trajectories are connected components of the level sets of $\psi(x_1, x_2)$ in the planes $x_3 = \text{const.}$ Assume for simplicity that $\psi(x_1, x_2)$ is generic (has a finite number of critical points and they are non-degenerate), and $\lim \psi(x_1, x_2) = \infty$, as $|x_1| + |x_2| \to \infty$, so that all level sets are bounded. We will write equations (1) in the form $\dot{X}_t = \nabla \psi(\dot{X}_t)$ putting the x_3 -component of $\nabla \psi$ equal to zero.

Consider now a 3D-perturbation of this planar motion preserving the incompressibility:

$$V^{\varepsilon}(x) = V(x) + \varepsilon \beta(x), x \in \mathbb{R}^{3},$$

where $\beta(x)$ is a smooth vector field, div $\beta(x) = 0, 0 < \varepsilon \ll 1$.

Then the trajectories of the perturbed flow are governed by the equations

$$\tilde{X}^{\varepsilon}(t) = \overline{\nabla}\psi(\tilde{X}^{\varepsilon}(t)) + \varepsilon\beta(\tilde{X}^{\varepsilon}(t))$$

If x_3 -component of $\beta(x)$ is again equal to zero, the new motion is also planar, and for, $0 < \varepsilon \ll 1$, is close to the original motion on any time interval. But if $\beta_3(x) \neq 0$, the behavior of the perturbed flow can be essentially different from the non-perturbed flow. Moreover, long time behavior of $\tilde{X}^{\varepsilon}(t)$ can be, in a sense, stochastic in spite of the deterministic character of the original flow and perturbations.

Assume, first, that the stream function $\psi(x_1, x_2)$ has just one critical point, a minimum at a point $O \in \mathbb{R}^2$, $\psi(O) = 0$. Then, since we assume that $\psi(x_1, x_2) \to \infty$ as $|x_1| + |x_2| \to \infty$, each non-perturbed trajectory is periodic with a period

$$T(z) = \oint_{C(z)} \frac{dl}{|\nabla \psi(x)|},$$

where $C(z) = \{(x_1, x_2) \in \mathbb{R}^2 : \psi(x_1, x_2) = z\}$, dl is the length element on C(z), and $z = \psi(x_1, x_2)$ if the trajectory starts at $(x_1, x_2, x_3) \in \mathbb{R}^3$. On any finite (independent of ε) time interval [0, T], $\tilde{X}_t^{\varepsilon}$ converges uniformly to the non-perturbed motion. But on intervals of order ε^{-1} , $\varepsilon \downarrow 0$, the perturbed motion essentially deviates from the non-perturbed one.

To describe the motion on large time intervals, it is convenient to rescale the time: Put $X_t^{\epsilon} = \tilde{X}^{\epsilon}(t/\epsilon)$. Then $X^{\epsilon}(t)$ satisfies the equation

$$\dot{X}^{\varepsilon}(t) = \frac{1}{\varepsilon} \,\overline{\nabla} \psi(X^{\varepsilon}(t)) + \beta(X^{\varepsilon}(t)),$$

$$X^{\varepsilon}(0) = x \in \mathbb{R}^{3}.$$
(2)

Deterministic 3D-Perturbations Lead to Stochasticity

The perturbed motion has two components, the fast one, which is, roughly speaking, the motion along the non-perturbed trajectories, and the slow component which describes displacements in the directions transversal to the non-perturbed trajectories.

The fast motion can be characterized by the invariant density $M_z(x)$ on each periodic trajectory C(z):

$$M_z(x) = \left(|\nabla \psi(x)| \oint_{C(z)} \frac{dl}{|\nabla \psi(x)|} \right)^{-1} = \frac{1}{T(z) |\nabla \psi(x)|}, \qquad x \in C(z)$$

The slow component can be described by the evolution of $Y_t^{\varepsilon} = (\psi(X_1^{\varepsilon}(t), X_2^{\varepsilon}(t)), X_3^{\varepsilon}(t)) \in [0, \infty) \times \mathbb{R}^1$, if $\psi(x_1, x_2)$ has just one minimum at $O \in \mathbb{R}^2$, $\lim_{|x_1|+|x_2|\to\infty} \psi(x_1, x_2) = \infty$ and $\psi(O) = 0$.

The standard averaging principle implies that the slow component Y_t^e converges uniformly on any time interval [0, T] to the solution of equations

$$\dot{\psi}(t) = \frac{1}{T(\psi(t))} B(\psi(t), X_3(t)),$$

$$\dot{X}_3(t) = \frac{1}{T(\psi(t))} D(\psi(t), X_3(t)),$$

$$\psi(0) = \psi(x_1, x_2), x_3(0) = x_3.$$

(3)

The coefficients $B(z, x_3)$ and $D(z, x_3)$ are defined as follows:

$$B(z, x_3) = \oint_{C(z)} \frac{\beta(x) \cdot \nabla \psi(x)}{|\nabla \psi(x)|} dl = -\int_{G(z)} \frac{\partial \beta_3(x_1, x_2, x_3)}{\partial x_3} dx_1 dx_2,$$
$$D(z, x_3) = \oint_{C(z)} \frac{\beta_3(x_1, x_2, x_3)}{|\nabla \psi(x_1, x_2)|} dl,$$
(4)

where $G(z) \subset \mathbb{R}^2$ is the domain bounded by C(z). We used here that div $\beta(x) = 0$, so that $\frac{\partial \beta_1}{\partial x_1} + \frac{\partial \beta_2}{\partial x_2} = -\frac{\partial \beta_3}{\partial x_3}$. The limiting slow motion takes place in $[0, \infty) \times \mathbb{R}^1$. It is easy to check that the boundary $\{O\} \times \mathbb{R}_1$ of this half-plane is inaccessible in finite time for the limiting slow motion.

Let us now consider the case when the stream function $\psi(x_1, x_2)$ has more than one critical point (see Fig. 1), $\min \psi(x_1, x_2) = 0$. Denote by Γ the graph homeomorphic to the set of connected components $C_i(z)$ of the level sets $C(z) = \{x \in \mathbb{R}^2 : \psi(x) = z\} = \bigcup_{i=1}^{n(z)} C_i(z), z \in [0, \infty)$, provided with the natural topology (compare with refs. 3 and 4).

Figure 1.

Let $Y: \mathbb{R}^3 \to \Gamma \times \mathbb{R}^1 = \Pi$ be the projection of \mathbb{R}^3 on $\Pi = \Gamma \times \mathbb{R}^1$: $Y(x_1, x_2, x_3)$ is the point of Π such that the second component equal to x_3 and the first component is the point of Γ corresponding to the level set component of $\psi(x_1, x_2)$ containing the point (x_1, x_2) . Let us number the edges of Γ . Let the triple $(\psi(x), k(x), x_3)$ is the point of Π corresponding to $x = (x_1, x_2, x_3)$ in such a mapping; k(x) is the number of the edge of Γ containing Y(x). The slow component of the motion is now $Y_t = Y(X_t^c)$. It changes in the set $\Pi = \Gamma \times \mathbb{R}^1$ which is called open book. In the case of $\psi(x)$ with one saddle point like in Fig. 1, the set Π is shown on Fig. 2.

Until Y_t belongs to the same page of the open book Π , it can be described by standard averaging principle as above. The only difference is that, on each page, the averaging should be performed over the corresponding $C_i(z)$ or $G_i(z)$ so that the functions B and D in system (3) now depend on the number of the page (on the number of the edge of Γ); $B = B_i(z, x_3), D = D_i(z, x_3), T_i(z)$ are, in general different for different $i \in \{1, 2, 3\}$.

When a trajectory of the limiting slow motion approaches the set $Q_k = \{O_k\} \times \mathbb{R}^1$, where O_k is a vertex of Γ , $B_i(z, x_3)$ tends to zero. If

Figure 2.

Figure 3.

 $\psi(x_1, x_2)$ has at O_k an extremum (such vertices of Γ are called exterior), then the set $O_k \times R^1$ is inaccessible (see refs. 3 and 4). But it is easy to check that if O_k corresponds to a saddle point of $\psi(x_1, x_2)$, the set $\{O_k\} \times R^1$ (the binding of the open book) can be accessible in a finite time due to the logarithmic grows of $T_i(z)$ as $z \to \psi(O_k)$.

As a result of the accessibility of the binding, the limit of the slow component Y_t^{ε} as $\varepsilon \downarrow 0$ may not exist for large enough t. One can see this from Fig. 3, where the phase picture of the projection of the trajectories of the perturbed flow on the plane (x_1, x_2) is shown for $\psi(x_1, x_2)$ as in Fig. 1 and perturbations $\beta(x) = (\beta_1(x_1, x_2), \beta_2(x_1, x_2), \beta_3(x_1, x_2, x_3), \frac{\partial \beta_3}{\partial x_3}(x) > 0$. The separatrices of the saddle point O_2 are shown in the picture. The width of the ribbons is of the order ε as $\varepsilon \downarrow 0$. The shadowed ribbon enters the left domain G_- (see Fig. 1). The white ribbon enters G_+ . If x is situated outside of the curve γ , it will alternatively belong to shadowed or to white ribbon as $\varepsilon \downarrow 0$. Since the slow component enters $G_- \cup G_+$ in a finite time, the limit of $(\psi(X_1^{\varepsilon}(t), X_2^{\varepsilon}(t)), k(X_1^{\varepsilon}(t), X_2^{\varepsilon}(t)))$ as $\varepsilon \downarrow 0$ does not exist for t greater than the entrance time.

To regularize the problem and to establish the averaging principle in more or less general situation, one can introduce additional small stochastic perturbations of system (2). This can be done in various ways. The first way, and this, roughly speaking, is the traditional approach in the theory of dynamical systems, is to consider random perturbations of the initial conditions.

Let ξ^{δ} be the random variable distributed uniformly in the ball $\mathscr{E}^{\delta} = \{x \in \mathbb{R}^{3}, |x| \leq \delta\}$. Let $X_{\iota}^{\varepsilon, \delta}$ be the solution of (2), with the initial condition $X_{0}^{\varepsilon, \delta} = x + \xi^{\delta}$. Then $X_{\iota}^{\varepsilon, \delta}$ and its projection $Y_{\iota}^{\varepsilon, \delta} = Y(X_{\iota}^{\varepsilon, \delta})$ on Π are stochastic processes.

Consider a stochastic process Y_t , $0 \le t \le T$, on the open book Π which is defined as follows:

Inside each page $\pi_i = I_i \times R^1$, $I_i \subset \Gamma$, the evolution of Y_i is deterministic and is governed by the equations $((\psi, x_3)$ are the coordinates in $\pi_i)$

$$\frac{d\psi(t)}{dt} = \frac{1}{T_i(\psi(t))} B_i(\psi(t), X_3(t)), \psi(0) = \psi(x_2, x_2),$$

$$\frac{dX_3(t)}{dt} = \frac{1}{T_i(\psi(t))} D_i(\psi(t), X_3(t)), X_3(0) = x_3.$$
(5)

The coefficients $B_i(z, x_3)$, $D_i(z, x_3)$, $T_i(z)$ are defined by formulas (4) with C(z) and G(z) replaced by $C_i(z)$ and $G_i(z)$ where $C_i(z)$ are the components of z-level set of $\psi(x_1, x_2)$ corresponding to $I_i \subset \Gamma$ and $G_i(z)$ are domains bounded by $C_i(z)$. Trajectory $Y_i = (\psi(t), x_3(t))$ can reach the binding (axis x_3 in Fig. 2.) of the book in a finite time. Let it be the line $Q_k = O_k \times R^1$, where O_k is the vertex of Γ corresponding to a saddle point of $\psi(x_1, x_2)$. Three pages are glued together at $Q_k: \pi_{i_1}, \pi_{i_2}, \pi_{i_3} \subset \Pi$. Let Y_t come to a point $M \subseteq Q_k$ from the plane π_{i_1} . It follows from the definition of functions $B_i(z, x_3)$, that at least one of the fields $B_{i_2}(z, x_3)$ in π_{i_2} , or $B_{i_3}(z, x_3)$ in π_{i_3} is directed from Q_k in a vicinity of point M. If there is just one such field, say $B_{i_2}(z, x_3)$, the trajectory of Y_i leaves M immediately to the plane π_{i_1} and moves along the field $(B_{i_2}(z, x_3), D_{i_3}(z, x_3))$ in π_{i_3} . If both fields $B_{i_2}(z, x_3)$ and $B_{i_3}(z, x_3)$ are directed from Q_k , the process Y_t also leaves Q_k immediately and goes to π_{i_2} or to π_{i_3} with probabilities $P_2(M)$ and $P_3(M)$ independently of its behavior before it comes to the point $M \in Q_k$. To define the probabilities $P_2(M)$ and $P_3(M)$, consider the γ -curve (see Fig. 1), corresponding to the vertex O_k . Let the non-perturbed trajectories situated inside G_{-} near γ correspond to I_{i_2} , trajectories inside G_{+} correspond to I_{i_1} (and trajectories outside $G_- \cup G_+$ corresponds to I_{i_1}). Note, that, in general, the non-perturbed system may have inside G_{-} or G_{+} other saddle points. Let the point $M \in \Pi$ has coordinates (z, i, x_3) . Then

$$P_{2}(M) + P_{3}(M) = 1, \qquad \frac{P_{2}(M)}{P_{3}(M)} = \frac{\left| \int_{G_{-}} \frac{\partial \beta_{3}(x_{1}, x_{2}, x_{3})}{\partial x_{3}} dx_{1} dx_{2} \right|}{\left| \int_{G_{+}} \frac{\partial \beta_{3}(x_{1}, x_{2}, x_{3})}{\partial x_{3}} dx_{1} dx_{2} \right|}.$$
 (6)

These conditions define $P_2(M)$ and $P_3(M)$.

The process Y_t on Π defined above is unique. The stochasticity of Y_t is concentrated just on the binding of the open book, more precisely, at points of the binding such that there are two exits from them.

One can prove (compare with ref. 1), that if $\psi(x_1, x_2)$ has just one saddle point like in Fig. 1, the process $Y^{\varepsilon,\delta}(t)$ converge weakly in the space $C_{0T}(\Pi)$ of continuous on [0, T] functions with values in Π to the process Y_t , if, first, $\varepsilon \downarrow 0$ and then $\delta \downarrow 0$.

Deterministic 3D-Perturbations Lead to Stochasticity

But it turns out, that if the stream function has more than one saddle point, the regularization by random perturbation of the initial point does not exist, at least, for some perturbations.

Therefore we will not go into details to prove the convergence of $Y_t^{\varepsilon,\delta}$ to Y_t in the case of one saddle point.

One can use another way for the regularization of the problem: to perturb stochastically not the initial conditions but the equations themselves:

$$\dot{X}^{\varepsilon,\kappa}(t) = \frac{1}{\varepsilon} \,\overline{\nabla} \psi(X_1^{\varepsilon,\kappa}(t), X_2^{\varepsilon,\kappa}(t)) + \beta(X^{\varepsilon,\kappa}(t)) + \sqrt{\kappa} \,\sigma \dot{W}_t \tag{7}$$

Here $W_t = (W_t^1, W_t^2, W_t^3)$ is the Wiener process in R^3 , $\sigma = (\sigma_{ij})$ is a non-degenerate 3×3 -matrix with constant coefficients, $0 < \kappa \ll 1$. As above, we consider $\overline{\nabla}\psi$ as 3-vector with x_3 -component equal to zero. Define $a = (a_{ij}) = \sigma\sigma^*$. The generator of the diffusion process $X_t^{\epsilon,\kappa}$ in R^3 has the form:

$$L^{\varepsilon,\kappa}u(x) = \frac{\kappa}{2}\operatorname{div}(a\nabla u(x)) + \beta(x)\cdot\nabla u(x) + \frac{1}{\varepsilon}\overline{\nabla}\psi(x)\cdot\nabla u(x)$$

The process $X^{\varepsilon,\kappa}(t)$ in \mathbb{R}^3 has a fast and a slow components as $\varepsilon \downarrow 0$. The slow component is the projection of $X^{\varepsilon,\kappa}(t)$ on the open book Π : $T_t^{\varepsilon,\kappa} = Y(X_t^{\varepsilon,\kappa})$.

It follows from ref. 5 that the family $Y_t^{\varepsilon,\kappa}$, $0 \le t \le T$, converges weakly as $\varepsilon \downarrow 0$ in the space $C_{0T}(\Pi)$ to a diffusion process Y_t^{κ} on Π .

Inside a page $\pi_i \subset \Pi$, the process Y_t^{κ} is governed by the operator

$$\bar{L}_{i}^{\kappa}u(z, x_{3}) = \frac{\kappa}{2T_{i}(z)} \left[\frac{\partial}{\partial z} \left(A_{i}^{11}(z) \frac{\partial u}{\partial z} \right) + A_{i}^{33}(z) \frac{\partial^{2} u}{\partial x_{3}^{2}} \right] \\ + \frac{1}{T_{i}(z)} \left[B_{i}(z, x_{3}) \frac{\partial U}{\partial z} + D_{i}(z, x_{3}) \frac{\partial u}{\partial x_{3}} \right].$$

The coefficients $B_i(z, x_3)$, $D_i(z, x_3)$, $T_i(z)$ were defined above; $A_i^{11}(z)$, A_i^{33} are defined as follows:

$$A_i^{11}(z) = \int_{G_i(Z)} \operatorname{div}(a\nabla\psi(x_1, x_2)) \, dx_1 \, dx_2, \qquad A_i^{33} = a_{33}T_i(z)$$

Where $G_i(z)$ is the domain in the (x_1, x_2) -plane bounded by $C_i(z)$ such that $Y(G_i(z) \times R^1) \subset \pi_i$.

The operators \bar{L}_i^{κ} define the process Y_t^{κ} not in a unique way: one should add the gluing conditions at the binding of the open book Π . The gluing conditions define behavior Y_t^{κ} after hitting the binding.

The gluing conditions can be described by the domain D_A of the generator A of Y_i^{κ} : a bounded continuous function $u(z, i, x_3)$ on Π belongs to D_A if

(1) inside each page $\pi_i \subset \Pi$, the function $u(z, i, x_3)$ has two continuous bounded derivatives;

(2) the function Au (which is equal to $\bar{L}_i^{\kappa} u$ on π_i) is continuous on Π ;

(3) at any line $Q_k = \{0_k\} \times R^1 \subset \Pi$ which binds pages $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, u(z, i, x_3)$ satisfies the condition

$$\sum_{l=1}^{3} \alpha_{i_l} D_l u(0_k, x_3) = 0 \quad \text{for any} \quad x_3 \in \mathbb{R}^1$$
 (8)

Here D_i means differentiation in z in the plane π_{i_i} , $l \in \{1, 2, 3\}$. To calculate the coefficients $\alpha_{i_i} = \alpha_{i_i}(0_k)$, consider the ∞ -shaped curve γ corresponding to the saddle point O_k (see Fig. 1 and notations introduced there). Two bounded domains G_- and G_+ are defined by γ . Let I_{i_1} be the edge of Γ corresponding to the periodic trajectories situated inside G_- in a neighborhood of γ , I_{i_2} corresponds to the trajectories inside G_+ which are close to γ , and I_{i_3} corresponds to the exterior of $G_- \cup G_+$ near γ . Then

$$\alpha_{i_1} = \int_{G_-} \operatorname{div}(a\nabla\psi(x)) \, dx_1 \, dx_2, \qquad \alpha_{i_2} = \int_{G_+} \operatorname{div}(a\nabla\psi(x_1, x_2)) \, dx_1 \, dx_2,$$

$$\alpha_{i_3} = -(\alpha_{i_1} + \alpha_{i_2})$$
(9)

Remark. Note that the gluing conditions (8), (9) for the process Y_t^{κ} on Π are the same for all x_3 and for all κ , and they are independent of the deterministic perturbation $\beta(x_1, x_2, x_3)$. If the diffusion matrix $a = \sigma \sigma^*$ is unit, then the coefficients α_i are equal to vorticity in corresponding domains: vorticity of the non-perturbed flow $\omega(x_1, x_2) = -\Delta \psi(x_1, x_2)$, and

$$\alpha_{i_1/i_2} = \left| \int_{G_-/+} \omega(x) \, dx \right|, \qquad \alpha_{i_3} = - \left| \int_{G_- \cup G_+} \omega(x) \, dx \right|.$$

Let us consider now the limiting behavior of Y_t^{κ} , $0 \le t \le T$, as $\kappa \downarrow 0$. By standard arguments one can check that the family Y_t^{κ} , $0 < \kappa \le 1$, is tight in the weak topology in the space $C_{0,T}(\Pi)$ (compare with refs. 1 and 3.) Thus, to prove the convergence we should establish uniqueness of the limiting point.

Deterministic 3D-Perturbations Lead to Stochasticity

It is easy to see that inside each page $\pi \in \Pi$ the limiting process Y_t , $0 \le t \le T$, is the deterministic motion governed by the Eqs. (5). For example, this can be proved using stochastic differential equations for process Y_t^{κ} inside each page (see ref. 2, Chap. 4). Therefore, to prove the uniqueness, it is sufficient to check that the limiting process spends time zero at the binding and that the exit probabilities from any point of the binding are defined in a unique way.

In the case $\beta_1(x_1, x_2)$, $\beta_2(x_1, x_2)$ independent of x_3 , both these statements follow from Lemmas 2.3 and 2.2 of ref. 1 respectively. Moreover, the exit probabilities from a point of the binding, in this case, according to ref. 1, are the same for all x_3 , and they are defined by equalities (6). The case of perturbations depending on all variables x_1, x_2, x_3 can be reduced to the x_3 -independent case by using comparison arguments.

Note, that in spite of the fact that the gluing conditions for y_t^{κ} , $\kappa > 0$, are independent of the perturbations $\beta(x)$ and defined just by the diffusion matrix (a_{ij}) (and, of course, the stream function), the exit probabilities for Y_t are independent of (a_{ij}) and are defined by the deterministic perturbations $\beta(x)$. This means that stochasticity of the limiting slow motion of the flow is an intrinsic property of the non-perturbed system and its deterministic perturbations. The stochastic term serves just for regularization of the problem.

Combining these arguments, we have the following result:

Theorem. The slow component $Y_t^e = Y(X_t^e)$ of perturbed flow (2) converges as $\varepsilon \downarrow 0$ to the stochastic process Y_t on the open book Π , which is defined by Eqs. (5) inside the pages and by conditions (8) at the binding. This means that the double limit of $Y(X_t^{e,\kappa})$, where $X_t^{e,\kappa}$ is defined by (7), as, first, $\varepsilon \downarrow 0$, and then $\kappa \downarrow 0$, in the weak topology in $C_{0T}(\Pi)$ is equal to Y_t . The limiting process is independent of stochastic perturbations, which were introduced for regularization of the problem: The double limit of $Y_t^{e,\kappa}$ is the same for any matrix σ , det $\sigma \neq 0$.

Finally, I will mention one more way of regularization of problem (2): Replace $\beta(x)$ in this equation by $\beta^{\mu}(x) = \beta(x) + \mu \tilde{\beta}(x)$, where $\tilde{\beta}(x)$ is a random field in R^3 and $\mu \in R^1$. Let $X_t^{\epsilon,\mu}$ be the solution of Eq. (2) with such replacement. Under some assumptions concerning the random field $\tilde{\beta}(x)$ (compare with ref. 6), one can prove that the double limit $\lim_{\mu \downarrow 0} \lim_{\epsilon \downarrow 0} Y(X_t^{\epsilon,\mu})$ in the weak topology of $C_{0T}(\Pi)$ exits and equal to Y_t . So that this regularization again leads to the same process Y_t .

The intrinsic Stochasticity of incompressible and compressible flows were studied in a number of recent papers (see, for example, refs. 7 and 9, and a review paper 8). Stochasticity in those papers, as a rule, is the result of non-smoothness of the velocity field. If the velocity field is not Lipschitz, the differential equations for the trajectories may have non-unique solution. If we regularize the problem by addition of a small white noise $\sqrt{\kappa} \dot{W_t}$, $0 < \kappa \ll 1$, corresponding stochastic equation has a unique solution. If now $\kappa \to 0$, we can have a stochastic process in the limit. One can consider other types of regularization as well. In our case, the intrinsic stochasticity on long time intervals is caused by the instabilities of the original non-perturbed flow. The distribution of the limiting slow motion will be the same for various types of the regularization, so that the stochasticity is intrinsic in a strong sense.

Finally, I will mention, that the weak compressibility of the fluid can lead to stochasticity of the stationary 2D-flow: weak compressibility means that div $b(x) = \kappa \beta(x) = 0$, $0 < \kappa \ll 1$. Since $\beta(x) \neq 0$, the slow component of the 2D-flow can reach the γ -curve of a saddle point of the stream function $\psi(x)$, $x \in \mathbb{R}^2$, and then it may go with positive probabilities to one of the wells related to this saddle point.⁽¹⁾ Stochasticity related to week compressibility is studied also in ref. 7.

ACKNOWLEDGMENTS

This work was supported in part by grants from NSF and from Department of Energy.

REFERENCES

- M. Brin and M. Freidlin, On stochastic behavior of perturbed Hamiltonian systems, *Ergod. Theor. Dyn. Syst.* 20:55–76 (2000).
- 2. M. Freidlin, Functional Integration and Partial Differential Equations (Princeton Univ. Press, 1985).
- 3. M. Freidlin and A. Wentzell, Random perturbations of Hamiltonian systems, *Memoirs of AMS* 109:523 (1994).
- 4. M. Freidlin and A. Wentzell, *Random Perturbations of Dynamical Systems*, 2nd Ed. (Springer, 1998).
- 5. M. Freidlin and A. Wentzell, Diffusion process on an open book and averaging principle, submitted to *Stoch. Proc. Appl.*
- M. Freidlin and H. Ren, Autonomous stochastic pertubations of dynamical systems, *Russ. Math. Surv.* 57:3 (2000).
- W. E and E. Wanden-Eijnden, Generalized flows, intrinsic stochasticity, and turbulent transport, *Proc. Natl. Acad. Sci. USA* 97:8200–8205 (2000).
- G. Falkovich, K. Gawedski, and M. Vergassola, Particles and fields in fluid turbulence, *Rev. Mod. Phys.* 73:913–975 (2001).
- C. Gawedski and M. Vergassola, Phase transition in the passive scalar advection, *Physica D* 138:83–90 (2000).